Abstract

Liquid-Phase Pulsed Laser Ablation (LP-PLA) is a material processing and fabrication technique that offers distinct advantages over competing techniques. These include (1) it is a chemically 'simple and clean' synthesis, (2) it operates at ambient conditions (*i.e.* not extreme temperature and pressure), and (3) it can make novel materials that are unattainable by conventional, less energetic processes. These advantages allow us to combine selected solid targets and liquids to fabricate compound nanostructures with desired functions.

This thesis is mainly concerned with the fundamental aspects governing the self-assembly of nanomaterials made using LP-PLA. We have demonstrated that well-organized carbon nitride leaf-like nanostructures can be produced by LP-PLA using solid graphite and ammonia solution, without the assistance of any surfactants or pre-treatment. X-ray diffraction, Scanning electron microscopy, Transmission electron microscopy and X-ray photoelectron spectroscopy evidence shows that the nanostructured materials produced in this way are composed of crystalline α - or β -C₃N₄. The effect of various parameters including the reaction time, laser energy, and ammonia concentration has been studied systemically. A range of different carbon nitride structures with different length scales can be fabricated via a self-assembly ordering scheme. The size and morphology of these nanomaterials can be controlled by adjusting the growth conditions. A growth mechanism has been proposed based on our experimental observations, which is consistent with measured properties such as chemical bonding, and the optical bandgap.

We also combined the self-assembly concept with the LP-PLA technique. A two-step strategy was developed to control 2D or 3D carbon nitride well-defined hierarchical complex structures. In the first step, carbon nitride seed solutions were prepared by LP-PLA. In the second stage the chosen seed solution was deposited onto a silicon substrate. Via controlling the rate of evaporation, the starting seed

solution, and the size and the quantity of nanocrystals within the droplet, it was possible to create a range of nanoscale structures, including dense nanospheres, highly-symmetric flowers, hollow core-shell and uniform grass-like structures, respectively. The growth of such complex structures is governed by an evaporationdriven self-assembly process. The small building blocks, such as nanoparticles (NPs) or nanorods (NRs), nucleate on the existing crystals and share the same edges, to form a close-packed arrangement. By varying the design of the building blocks, materials combination, interfacial chemistry, and confining dimensions, we fabricated new structured materials with useful functional properties.

A similar growth by LP-PLA had been applied to a ZnO system. When ablating a zinc target in an aqueous solution of sodium dodecyl sulfate (SDS), ZnO nanostructures with a wide range of morphologies similar to those of carbon nitride were observed. The formation mechanism of highly ordered structures again appears to involve an increase of the structural complexity from zero-dimensional NPs to one-dimensional NRs, and then broadening of these into two-dimensional nanoleaves.

Our studies indicated that the self-assembly process can easily incorporated into current LP-PLA process with standard facilities. We believe such a combination is an effective method to synthesize a series of nanomaterials with controlled size and morphology via suitable choice of solid target material and liquid media. A thorough understanding of this controllable self-assembled growth is the key step towards nanosystem applications. Further work in this regard would be very interesting.

Author Declaration

I declare that the work in this dissertation was carried out in accordance with the Regulations of the University of Bristol. The work is original, except where indicated by special reference in the text, and no part of the dissertation has been submitted for any other academic award. Any views expressed in the dissertation are those of the author:

SIGNED: DATE:

Acknowledgements

This work would not have been possible without the funding that was provided by Universities UK via the Overseas Research Scholarship (ORS) scheme and the University of Bristol plus the School of Chemistry via a postgraduate research scholarship. Also, the Society of Chemistry Industry and the Alumni Foundation of Bristol helped with travel funding to Japan for a conference, which is greatly appreciated.

Over the past three years I could not have gotten where I am today without the partnership, support, and patience of a great number of people.

First and foremost I would like to thank my supervisor, Dr. Paul W. May, for his research insight, his critical questions and frank advice, and for setting an example of creativity and dedication for all who work with him. He has been more than an advisor; his vision, inspiration and enthusiasm will guide me throughout my life.

My co-advisor, Professor Mike N. R. Ashfold, has played a critical role in the formulation and execution of this research. His experience and insights were invaluable in the materials science aspect of this work. His useful discussion in my annual viva and full support as my career referee should never be forgotten. It has been an honour and privilege to have him on my thesis committee.

Dr. Tom B Scott in the Interface Analysis Centre has devoted a lot of time to very detailed characterization of these difficult structures by XPS. Dr. Yizhong Huang in the University of Oxford kindly provided me with help with HRTEM imaging. I also wish to thank Dr. Sean Davis and Jonathan Jones for their help and guidance for electron microscopes, Dr. Mei Li, Dr. Jiaguo Yu, Dr. Yan Xing and Dr. Avinash Patil for their efforts on how to use various experimental approaches. I wish to deliver my sincere acknowledgements to all of them.

I would also like to thank Dr. Huaxin Peng, for his energy and discussion about my research, as well as the future directions of my career. Professor Neil Allan is much appreciated for his assessment of my results and probing/thought-provoking questions in various presentations and annual viva exams. I also thank Professor Wang Nang Wang for being my external examiner and for his detailed advice which will help to improve the thesis.

Within Chemistry there are so many people to thank. In particular, I would like to thank: James Smith, Keith Rosser, Gareth Fuge, Jake Filik, Ye Sun, Jie Ma, Dane Comerford, Frederik Claeyssens and the current members of the group for putting up with the bad smells from the ammonia solution. I also extend my thanks to my project students: Chris Archer, Richard Brown and Tom Morris, with whom I worked closely, for their various contributions to the project.

This project cannot have been completed without the other supporting staff in Chemistry. They are: Sarah Sampson, Sarah Lawrence, Sue Williams, Rosemary Currer, Gwyn Jones, Charles Murray, Phil Powell, Duncan Tarling, Lee Hall, Philip Newberry, Des Davis, Paul Egan, David S. Linnett, Julian Hill, Sue Roberts, Kerrianne B. Orriss, Tim Harrison, Dan Ashby, and Mike Rickard. You have all, in your own way, made the difficult task of pursuing a doctorate bearable.

Graduate school without a solid set of friends would be tough indeed and I would be greatly remiss if I did not mention at least Linda Sellou, Jing Wang, DaCheng Chen, Jien Wu, ZhongShu Song, Manh Huong Phan and Feng Chen, as well as people I feel I've known for time immemorial, like Hangfeng Ji and Chufeng Wang, Wenming Zhao Jinren Huang and Ning Jia.

My husband, Lei Yin, is the best thing that has ever happened to me. He is a source of constant support and encouragement, who dropped out of his PhD in China and came to the UK with me. I am happy that we could go through everything in this country and achieve our academic goals in different fields at the same time.

Finally, I would like to thank my family back in China: my parents and parentsin law, for their sacrifices that they made for us and all the care and attention that they gave (and still give) us. Nothing is enough when it comes to their child. This dream that becomes a reality is as much yours as it is mine.

This thesis is dedicated to those closest, the core of my emotional life and the source of my inspiration.

Contents

Abstract	i
Author Declaration	iii
Acknowledgements	iv
Contents	vi
List of the figures	xi
List of the tables	xxviii
List of abbreviations	xxix

Chapter 1 Self-assembled ordering nanomaterials
§ 1.1 Introduction to nanomaterials1
§ 1.2 Fundamental aspects of self-assembled nanomaterials5
§ 1.2.1 The principles of self-assembly7
§ 1.2.1.1 Components
§ 1.2.1.2 Interactions
§ 1.2.1.3 Adjustability7
§ 1.2.1.4 Environment
§ 1.2.1.5 Mass transport and agitation
§ 1.2.2 Types of self-assembly
§ 1.3 Current development and applications of self-assembly
§ 1.3.1 Self-assembled monolayers on solid substrates
§ 1.3.2 Colloidal self-assembly14
§ 1.3.3 Epitaxially grown self-organized solid-state quantum dots16
§ 1.3.4 Self-assembly of nanocrystals and nanowires
§ 1.3.5 Directed self-assembled hierarchically structure
§ 1.4 Summary and outline of the thesis
Bibliography27
Chapter 2 Liquid-phase pulsed laser ablation
§ 2.1 Introduction

§ 2.2 Func	lamental aspects of LP-PLA	35
§ 2.3 Mate	erials produced by LP-PLA	37
§ 2.3.	1 Nanometre-sized particles	37
§ 2.3.	2 One-dimensional nanostructures	40
§ 2.3.	3 Higher-dimensional ordering	41
§2.4 Liqu	id phase ablation mechanism	44
§ 2.5 Cone	clusions	46
Bibliograp	hy	48
Chapter 3 Exp	erimental and characterization techniques	52
§ 3.1 Initia	al synthesis methods	52
§ 3.1.	1 Liquid-Phase Pulsed Laser Ablation	52
§ 3.1.	2 Nd:YAG laser	54
§ 3.1.	3 The Reaction Cell	55
§ 3.1.	4 Ablation procedure	57
§ 3.1.	5 Sample separation and further analysis preparation	58
§ 3.2 Sequ	ential deposition and self-assembly	58
§ 3.2.	1 General two-step deposition	58
§ 3.2.	2 Main drying process	60
§ 3.3 Mate	erials analysis methods	61
§ 3.3.	1 Micro-Combustion Elemental Analysis	61
§ 3.3.	2 X-ray Powder Diffraction (XRD)	62
§ 3.3.	3 Scanning Electron Microscopy (SEM)	64
§ 3.3.	4 Transmission Electron Microscopy (TEM) and High Resoluti	on
(HR)	ТЕМ	67
§ 3.3.	5 Selected Area Electron Diffraction (SAED) and Microdiffract	tion
Patter	n (MDP)	71
§ 3.3.	6 Energy Dispersive X-ray Spectroscopy (EDX)	74
§ 3.3.	7 X-ray Photoelectron Spectroscopy (XPS)	75
§ 3.3.	8 Laser Raman Spectroscopy (LRS)	78
§ 3.3.	9 Photoluminescence (PL)	80
§ 3.3.	10 Ultraviolet / Visible (UV / Vis) Absorption Spectroscopy	80
§ 3.3.	11 Fourier Transform Infrared Spectroscopy (FTIR)	82

§ 3.3.12 Optical Emission Spectroscopy (OES)	84
Bibliography	86
Chapter 4 Highly self-organized growth of carbon nitride	88
§ 4.1. Introduction to Carbon Nitride	88
§ 4.1.1. Structures and properties of C ₃ N ₄ phases	89
4.1.2. Bonding in C ₃ N ₄	92
§ 4.1.3. Previous C ₃ N ₄ Research	94
§ 4.1.4. Aim of this study	96
§ 4.2 General nanostructural features in solid-liquid growth	97
§ 4.2.1 Identification of a carbon nitride phase	98
§ 4.2.2 Control of self-assembled structures	107
§ 4.2.2.1 Varying ablation time	107
§ 4.2.2.2 Varying laser fluence	111
§ 4.2.2.3 Varying ammonia concentration	116
§ 4.3 Properties of carbon nitride	118
§ 4.3.1 Vibrational properties via Raman spectroscopy	118
§ 4.3.2 Bonding state via XPS analysis	121
§ 4.3.3 Optical properties of the nanostructures	125
§ 4.4 Growth mechanism for solid-liquid growth	128
§ 4.4.1 Species diagnostics during laser ablation process	128
§ 4.4.2 Mechanism for the ordering of carbon nitride nanocrystals	132
§ 4.4.2.1 Self-assembled arrangement within the nanoleaf struct	ures
	132
§ 4.4.2.2 Nanoparticle interactions via oriented attachment	134
§ 4.4.2.3 Proposed model for self-organized growth	138
§ 4.5 Conclusions	140
Bibliography	142
Chapter 5 Sequential nucleation and growth of complex nanostructures	149
§ 5.1 Introduction	149
§ 5.2 Processing hierarchically structured nanomaterials	152
§ 5.2.1 Structure of the nanocrystal self-assembly	153
§ 5.2.2 Control of the quality of self-assembly	160

§ 5.2.2.1 Diffusion of the building blocks	160
§ 5.2.2.2 Interconnection between the big structures	162
§ 5.2.3 Dynamic study of self-assembly formation	167
§ 5.2.3.1 Influence of the drying time	167
§ 5.2.3.2 Influence of the starting seed solution	171
§ 5.3 Arrangement of components among the architectures	177
§ 5.4 General discussion about self-assembly mechanism	184
§ 5.5 Conclusions	186
Bibliography	189
Chapter 6 Growth of self-assembled ZnO nanoleaf from aqueous solution	by pulsed
laser ablation	192
§ 6.1 Introduction - ZnO	192
§ 6.1.1 Crystal structure of ZnO	193
§ 6.1.2 Properties of ZnO	194
§ 6.1.3 Applications of ZnO	197
§ 6.1.4 Aims of synthesis of ZnO nanostructures by LP-PLA	198
§ 6.2 Experimental details of ZnO synthesis	199
§ 6.3 Growth of self-assembled ZnO nanoleaf structures	200
§ 6.3.1 General features of ZnO nanostructures	200
§ 6.3.2 Controllable growth of ZnO nanostructures	203
§ 6.3.3 XPS analysis of ZnO nanostructures	206
§ 6.3.4 Photoluminescence of ZnO nanostructures	208
§ 6.4 Conclusions	209
Bibliography	211
Chapter 7 Conclusions and future work	215
Bibliography	218
Appendix A Growth of diamond nanocrystals by pulsed laser ablation of g	raphite in
liquid	219
§ A.1 Introduction	219
§ A 2 Experimental details	221
§ A 3 Results and discussion	222
§ A 4 Conclusions	227

Bibliography	229
Appendix B Attempt to fabricate carbon phosphide by LP-PLA	231
§ B.1 Introduction to carbon phosphide	231
§ B 2 Experimental details	232
§ B 3 Results and discussion	233
§ B 4. Conclusion	236
Bibliography	238
Appendix C Publication lists	239

List of the figures

Figure 1.1 Density of states for metal and semiconductor nanocrystals compared to
those of the bulk and of isolated atoms (reproduced from [6])
Figure 1.2 Size dependence of the (a) melting temperature of CdS nanocrystals and
(b) the pressure induced transformation of wurtzite-rock salt transformation in
CdSe nanocrystals (reproduced from [7])4
Figure 1.3 Examples of static self-assembly. (a) Crystal structure of a ribosome [48].
(b) Self-assembled peptide-amphiphile nanofibres [49]. (c) An array of
millimetre-sized polymeric plates assembled at a water/perfluorodecalin
interface by capillary interactions [50]. (d) Thin film of a nematic liquid crystal
on an isotropic substrate [51]. (e) Micrometer-sized metallic polyhedra folded
from planar substrates [52]. (f) A 3D aggregate of micrometre plates assembled
by capillary forces [53]10
Figure 1.4 Examples of dynamic self-assembly [54]. (a) An optical micrograph of a
cell with fluorescently labelled cytoskeleton and nucleus; microtubules (~24 nm

- cell with fluorescently labelled cytoskeleton and nucleus; microtubules (~24 nm in diameter) are coloured red. (b) Reaction-diffusion waves in a Belousov-Zabatinski reaction in a 3.5-inch Petri dish [48]. (c) A simple aggregate of three millimetre-sized, rotating magnetized disks interacting with one another via vortex-vortex interactions [55]. (d) A school of fish. (e) Concentric rings formed by charged metallic beads 1 mm in diameter rolling in circular paths on a dielectric support. (f) Convection cells formed above a micropatterned metallic support. The distance between the centres of the cells is ~ 2 mm......11
- Figure 1.5 Scanning tunnelling microscopy image of octanethiol monolayer on Au (111). The molecules self-assemble on the gold surface and form the observed ordered lattice spontaneously. Octanethiol molecules commensurate with the underlying gold lattice structure as marked in the image (reproduced from [65]).

Figure 1.6 Scanning electron microscopy (SEM) images of hierarchical colloidal self-assembly. (a) The largest pattern in the structure is made by using micro-

- Figure 1.9 (a) An SEM image of α -Ag2Se NWs obtained by reacting t-Se NWs with an aqueous AgNO3 solution. (b) A TEM image of α -Ag2Se NWs and the electron diffraction pattern (inset) taken from the middle portion of an individual NW. The diffraction spots can be indexed to the orthorhombic structure. (c) A high-resolution TEM image obtained from the edge of an individual wire, indicating its single crystallinity. The fringe spacing of 0.35 nm corresponds to the interplanar distance of {200} planes, implying that the growth direction of this NW was <100>. (d) A TEM image of an α -Ag2Se NW ~ 50 nm in diameter. This wire was crystallized in the tetragonal structure, as revealed by its electron diffraction pattern (inset) (reproduced from [98])...20
- Figure 1.10 Hierarchically ordered octahedral open crystal silicate structures: (a) Primary octahedral crystals. (b) Secondary octahedral crystals: (1) face-on, (2) top view from one corner, (3) edge-on, (4) tilted edge-on. (c) Tertiary octahedral crystal. (d) Large open octahedral objects containing five primary octahedral units on each side. (e) Large area view of high-order open structures. (f) Large open structures assembled from tertiary units (reproduced from [107]).

Figure 1.11 Micropatterning of hierarchical ZnO crystals: (a) Schematic illustration of micropattern chemistry for patterned ZnO growth. (b) Dotted patterns of

vertically oriented NRs and patterned single crystals (insets). (c) Arrays of separated, secondary flowerlike structures. (d) Side-view of array in (c) with the inset showing the first-generation seed bundles. (e) Dense array of secondary ZnO 'flowers'. The patterned NR arrays and single crystals in (b) were synthesized on Ag substrates in one growth step after microstamping, and the flowerlike crystals in (c-d) were grown in a second stage on patterned arrays like that shown in (b, lower inset) (reproduced from [109])......23 Figure 1.12 (a) ZnO NR coated with CdS NP seeds. (b) CdS NRs on ZnO crystals Figure 2.1 Schematic diagram of a typical LP-PLA setup: (1) laser *e.g.* Nd-YAG; (2) reflecting mirror; (3) laser beam; (4) focusing lens; (5) chamber; (6) liquid; (7) target holder; (8) collecting pipe (optional); (9) effusion pipe (optional); (10) Figure 2.2 (a) HRTEM view of Ag NPs obtained by ablation of bulk Ag in water. (b) TEM view of linked Au NPs produced at elevated laser fluence (35 J/cm²) Figure 2.3 The carbon phase diagram. Regions obtainable via: (A) shock wave; (B) high temperature high pressure compression, and (C) LP-LPA production Figure 2.4 (a) The morphology and (b) the corresponding SAED pattern of LP-PLAprepared diamond crystals. A single diamond grain has an intergrowth crystal Figure 2.5 (a) TEM bright field image of immiscible silver-nickel alloy NRs synthesized by LP-PLA at the nickel-silver nitrate solution interface, (b) TEM bright field image of a single crystalline Ag-Ni alloy NR, EDX spectrum (inset) confirms that the NR is composed of Ag and Ni (reproduced from [52])......40 Figure 2.6 CNTs prepared at graphite-water interface by LP-PLA. (a) Network distributed CNT from highly oriented pyrolytic graphite (HOPG), (b) single Figure 2.7 TEM images of the samples obtained from LP-PLA of 0.05 M SDS solution using different laser powers: (a) Sample obtained by laser ablation with

70 mJ/pulse, (b) HRTEM image of a typical particle in sample (a), (c) HRTEM

image of a typical particle with 35 mJ/pulse, and (d) local magnified image
corresponding to the framed region marked in image (c). The circles in image
(d) show the ultrafine nanocrystals in the shell (reproduced from [56])
Figure 2.8 TEM images of the (a) as-prepared and (b) aged product from a stable
0.05 M SDS NP colloid. The SAED patterns for (c) the unassembled NPs and
(d) the edge region of the self-assembled treelike nanostructures (reproduced
from [57])
Figure 2.9 TEM bright field image of (a) fractal-like nanodendrites grown during LP-
PLA in a silver nitrate solution. (b) detailed structures of silver nanoparticles
and silver oxide nanoplumes (reproduced from [58])
Figure 2.10 Schlieren images of an oscillating cavitation bubble in front of a solid
boundary at times $t \approx$ (a) 110, (b) 170, (c) 200, (d) 210, (e) 215, (f) 217, (g)
220.5, (h) 224.5 µs. The horizontal bar in image (a) (bottom right corner)
measures 1 mm (reproduced from [33])
Figure 3.1 Schematic diagram of the basic LP-PLA system used in these studies53
Figure 3.2 Experimental apparatus setup
Figure 3.3 Photograph of the Nd:YAG laser used in this study
Figure 3.4 Custom-made stainless steel cell (a) top with indent and O-rings to hold
the glass window, (b) glass window, (c) middle section, variable in width and
with a 16 mm-diameter hole throughout, (d) base. The sections are bolted
together
Figure 3.5 Schematic diagram of a two-step strategy for increasing the complexity
of the nanostructures
Figure 3.6 An X-ray diffraction beam schematic [11], showing the incident and
scattered X-rays, from a pair of atoms in different lattice planes. The relation by
which diffraction occurs is known as Bragg's law63
Figure 3.7 Photograph of the X-ray powder diffractometer used in this study, the X-
ray source is on the left, the sample is in the middle and the detector is on the
right
Figure 3.8 Schematic diagram of a scanning electron microscope
Figure 3.9 A photo of FESEM JEOL 6300 FEG microscope in University of Bristol.
(http://www.chm.bris.ac.uk/emuweb/6300f.htm)66

Figure 3.10 Schematic diagram of transmission electron microscope
Figure 3.11 A photo of the TEM JEOL 2010 microscope in the University of Bristol.
(http://www.chm.bris.ac.uk/emuweb/2010.htm)
Figure 3.12 (a) A typical electron diffraction pattern for a crystalline specimen []. (b)
The geometry of electron diffraction (note: no lenses have been shown, since
they merely alter the effective camera length, L.)
Figure 3.13 The mechanism of photoelectron emission in X-ray Photoelectron
Spectroscopy76
Figure 3.14 Schematic diagram of a Raman spectrometer
Figure 3.15 Photograph of Renishaw Raman spectrometer used in this study79
Figure 3.16 Illustration of the electronic transitions process during light absorption.
Figure 3.17 Schematic illustration of an FTIR system
Figure 3.18 Experimental setup for LP-PLA and optical emission spectroscopy84
Figure 4.1 Depresentation of the (a) $\boldsymbol{\theta} \in \mathbf{N}$ (b) $\boldsymbol{\sigma} \in \mathbf{N}$ (c) $\boldsymbol{\sigma} \in \mathbf{N}$ (d)
Figure 4.1 Representation of the (a) \mathbf{p} -C ₃ N ₄ , (b) $\mathbf{\alpha}$ -C ₃ N ₄ , (c) \mathbf{g} -C ₃ N ₄ , (d)
produce 4.1 Representation of the (a) \mathbf{p} -C ₃ N ₄ , (b) $\mathbf{\alpha}$ -C ₃ N ₄ , (c) \mathbf{g} -C ₃ N ₄ , (d) pseudocubic-C ₃ N ₄ , (bl-C ₃ N ₄) and (e) cubic-C ₃ N ₄ structures down the [001] axis.
pseudocubic-C ₃ N ₄ , (bl-C ₃ N ₄) and (e) cubic-C ₃ N ₄ structures down the [001] axis. The carbon and nitrogen are depicted as grey and blue spheres, respectively [3].
Pigure 4.1 Representation of the (a) \mathbf{p} -C ₃ N ₄ , (b) $\mathbf{\alpha}$ -C ₃ N ₄ , (c) \mathbf{g} -C ₃ N ₄ , (d) pseudocubic-C ₃ N ₄ , (bl-C ₃ N ₄) and (e) cubic-C ₃ N ₄ structures down the [001] axis. The carbon and nitrogen are depicted as grey and blue spheres, respectively [3].
 Figure 4.1 Representation of the (a) p-C₃N₄, (b) α-C₃N₄, (c) g-C₃N₄, (d) pseudocubic-C₃N₄, (bl-C₃N₄) and (e) cubic-C₃N₄ structures down the [001] axis. The carbon and nitrogen are depicted as grey and blue spheres, respectively [3]. Figure 4.2 Total energies as a function of volume for different C₃N₄ phases. Curves
 Figure 4.1 Representation of the (a) p-C₃N₄, (b) α-C₃N₄, (c) g-C₃N₄, (d) pseudocubic-C₃N₄, (bl-C₃N₄) and (e) cubic-C₃N₄ structures down the [001] axis. The carbon and nitrogen are depicted as grey and blue spheres, respectively [3]. Figure 4.2 Total energies as a function of volume for different C₃N₄ phases. Curves were generated from fits to the calculated data points using the Birch equation
 Figure 4.1 Representation of the (a) p-C₃N₄, (b) a-C₃N₄, (c) g-C₃N₄, (d) pseudocubic-C₃N₄, (bl-C₃N₄) and (e) cubic-C₃N₄ structures down the [001] axis. The carbon and nitrogen are depicted as grey and blue spheres, respectively [3]. Figure 4.2 Total energies as a function of volume for different C₃N₄ phases. Curves were generated from fits to the calculated data points using the Birch equation of state [3].
 Figure 4.1 Representation of the (a) p-C₃N₄, (b) a-C₃N₄, (c) g-C₃N₄, (d) pseudocubic-C₃N₄, (bl-C₃N₄) and (e) cubic-C₃N₄ structures down the [001] axis. The carbon and nitrogen are depicted as grey and blue spheres, respectively [3]. Figure 4.2 Total energies as a function of volume for different C₃N₄ phases. Curves were generated from fits to the calculated data points using the Birch equation of state [3]. Figure 4.3 Chemical bonding in C₃N₄.
 Figure 4.1 Representation of the (a) p-C₃N₄, (b) a-C₃N₄, (c) g-C₃N₄, (d) pseudocubic-C₃N₄, (bl-C₃N₄) and (e) cubic-C₃N₄ structures down the [001] axis. The carbon and nitrogen are depicted as grey and blue spheres, respectively [3]. Figure 4.2 Total energies as a function of volume for different C₃N₄ phases. Curves were generated from fits to the calculated data points using the Birch equation of state [3]. Figure 4.3 Chemical bonding in C₃N₄. 92 Figure 4.4 Structure of planar g-C₃N₄ [14]. Nitrogens occupy two different
 Figure 4.1 Representation of the (a) p-C₃N₄, (b) a-C₃N₄, (c) g-C₃N₄, (d) pseudocubic-C₃N₄, (bl-C₃N₄) and (e) cubic-C₃N₄ structures down the [001] axis. The carbon and nitrogen are depicted as grey and blue spheres, respectively [3].
 Figure 4.1 Representation of the (a) p-C₃N₄, (b) a-C₃N₄, (c) g-C₃N₄, (d) pseudocubic-C₃N₄, (bl-C₃N₄) and (e) cubic-C₃N₄ structures down the [001] axis. The carbon and nitrogen are depicted as grey and blue spheres, respectively [3]. Figure 4.2 Total energies as a function of volume for different C₃N₄ phases. Curves were generated from fits to the calculated data points using the Birch equation of state [3]
 Figure 4.1 Representation of the (a) p-C₃N₄, (b) d-C₃N₄, (c) g-C₃N₄, (d) pseudocubic-C₃N₄, (bl-C₃N₄) and (e) cubic-C₃N₄ structures down the [001] axis. The carbon and nitrogen are depicted as grey and blue spheres, respectively [3]. Figure 4.2 Total energies as a function of volume for different C₃N₄ phases. Curves were generated from fits to the calculated data points using the Birch equation of state [3]. Figure 4.3 Chemical bonding in C₃N₄. Figure 4.4 Structure of planar g-C₃N₄ [14]. Nitrogens occupy two different positions in the layer, labelled N₁ and N₂. Figure 4.5 Photograph of the colour changes of the as-prepared suspensions after ablation for different times (35% ammonia solution, laser fluence 100 mJ per
 Figure 4.1 Representation of the (a) p-C₃N₄, (b) a-C₃N₄, (c) g-C₃N₄, (d) pseudocubic-C₃N₄, (bl-C₃N₄) and (e) cubic-C₃N₄ structures down the [001] axis. The carbon and nitrogen are depicted as grey and blue spheres, respectively [3].
 Figure 4.1 Representation of the (a) p-C₃N₄, (b) d-C₃N₄, (c) g-C₃N₄, (d) pseudocubic-C₃N₄, (bl-C₃N₄) and (e) cubic-C₃N₄ structures down the [001] axis. The carbon and nitrogen are depicted as grey and blue spheres, respectively [3]
Figure 4.1 Representation of the (a) \mathbf{p} -C ₃ N ₄ , (b) \mathbf{d} -C ₃ N ₄ , (c) \mathbf{g} -C ₃ N ₄ , (d) pseudocubic-C ₃ N ₄ , (bl-C ₃ N ₄) and (e) cubic-C ₃ N ₄ structures down the [001] axis. The carbon and nitrogen are depicted as grey and blue spheres, respectively [3]
Figure 4.1 Representation of the (a) \mathbf{p} -C ₃ N ₄ , (b) \mathbf{u} -C ₃ N ₄ , (c) \mathbf{g} -C ₃ N ₄ , (d) pseudocubic-C ₃ N ₄ , (b)-C ₃ N ₄) and (e) cubic-C ₃ N ₄ structures down the [001] axis. The carbon and nitrogen are depicted as grey and blue spheres, respectively [3].
Figure 4.1 Representation of the (a) $p-C_3N_4$, (b) $d-C_3N_4$, (c) $g-C_3N_4$, (d) pseudocubic- C_3N_4 , (b)- C_3N_4) and (e) cubic- C_3N_4 structures down the [001] axis. The carbon and nitrogen are depicted as grey and blue spheres, respectively [3].
Figure 4.1 Representation of the (a) $p-C_3N_4$, (b) $d-C_3N_4$, (c) $g-C_3N_4$, (d) pseudocubic- C_3N_4 , (bl- C_3N_4) and (e) cubic- C_3N_4 structures down the [001] axis. The carbon and nitrogen are depicted as grey and blue spheres, respectively [3].

- Figure 4.8 FTIR spectrum of the NRs showing two peaks at 1034 cm⁻¹ and 1384 cm⁻¹ corresponding to C-N stretching modes. The absorption bands around 1637 cm⁻¹ and 2264 cm⁻¹ are assigned to the vibrational modes of C=N and C= N bonds, respectively, which suggests the formation of crystalline α -C₃N₄...102
- Figure 4.9 TEM images of samples produced by LP-PLA of a graphite target in 35% ammonia solution (laser fluence at 100 mJ per pulse) for durations of: (a) and (b) 1 h, (c) and (d) 3 h, (e) 5 h (laser power at 125 mJ), 2 h (g) and (h) (laser power at 50 mJ). (a) 'Leaf-like' structures are formed after only short ablation times. The higher magnification image of these, (b), shows that these structures are composed of smaller NRs. For longer ablation times, (c), the leaf-like structures increase in size and coalesce to form larger, denser, structures. The higher magnification image (d) of the region enclosed by the dashed lines shows that the surface of these structures is smooth. For even longer ablation times, (e), the denser structures begin to assemble together to form microscale networks. (f) A typical SAED pattern from the leaf-like nanostructures in (a), which corresponds closely to the calculated interlayer *d*-spacing of β -C₃N₄. (g) NR aggregates with better developed layer surface after 2 h ablation at lower 50 mJ laser power. (h) Individual NRs from (g) that have aggregated. (i) SAED dot pattern of a NR from (h) indicating the area is single crystal and consistent with

- Figure 4.11 TEM images of C₃N₄ nanostructures synthesized at 75 mJ / pulse laser fluence for different ablation times. (a) After 10 min ablation, spherical NPs appear, with an average particle size of 15-20 nm. Adjacent particles are aligned with one another along their main axes, highlighted by the inset rectangles. Short rods (highlighted by circles) have already formed, and serve as the starting structures for the subsequent formation of leaf-like structures. (b) After 30 min ablation there is a mixture of leaf-shaped structures and their component NPs. (c) After 3 h ablation the leaf-like structures are larger, better developed, and have a smooth surface. (d) A single 'leaf' formed by numerous small NPs. (e) Interconnected leaf-like structures formed by NRs. Note that those rods perpendicular to the propagating axis (*c*-axis, dashed line in the picture) along the structure were well aligned. (f) High magnification image showing that after 5 h ablation time the NRs inside the leaf-like structures have not changed in size or shape.
- Figure 4.12 (a-d) HRTEM images of a series of aggregated particles, scale bar is 2 nm. (a) The interconnection of two leaf-like structures is highlighted by the two ringed areas. (b) The size of the internal NPs is about 3-5 nm. (c) The lattice planes go straight through the interface between the particles, which means that the particles are fused together with no interlayer separating them. (d) High magnification image of a grain boundary, shown by the arrows. (e) The NR aggregates exhibit a long-range order; arrows indicate the projecting direction along [111]. (f) SAED pattern of a NR from the [111] zone-axis indicating the area is a single crystal and consistent with crystalline β-carbon nitride.
- Figure 4.13 TEM images of as-synthesized C_3N_4 nanoleaf structures prepared using a laser fluence of 100 mJ per shot and 35% ammonia solution for ablation times of (a) t = 1 h, (b) 3 h, (c) 5 h and (d) 7 h. The concentration of the nanoleaf structures decreases with ablation time, but the average length of each nanoleaf increases. (e) The corresponding nanoleaf length distribution for samples grown under different ablation times (with Gaussian fits to the data, dashed lines), as determined from TEM images. N = number fraction of nanoleaf structures, expressed as a percentage. Statistical analysis of the length of the

 C_3N_4 nanoleaf structures yields average lengths <1> of 235, 272, 336 and

- 399 nm for different ablation times t = 1, 3, 5, and 7 h, respectively......111

- Figure 4.16 TEM images of C₃N₄ nanoflowers synthesized for 12 h ablation time and 35% ammonia solution using different laser fluences. (a) 50 mJ/ pulse, (b) 75 mJ/ pulse, (c) 125 mJ/ pulse (see text for the discussion)......116
- Figure 4.17 TEM images obtained by LP-PLA in 25% ammonia solution: (a) isolated carbon nitride NRs (50 mJ/ pulse, t = 1 h) (b) Branched NRs (50 mJ/ pulse, t = 3 h) (c) highly branched flowerlike architectures (100 mJ/ pulse, t = 12 h). (d) Rod-like structures showing straight, long and sharp tips. (e) Enlarged image of the region at the top of the NRs indicated by the open box in (d). (f) HRTEM image of a single NR, the inset shows the atomic arrangement, scale bar 1 nm.

- Figure 4.23 Plot of UV-visible absorbance from the ablation product (laser fluence at 100 mJ /pulse) for different ablation times, showing a prominent feature at ~266 nm. Key: 1 h, ∆ 3 h, 5 h, × 7 h.

- Figure 4.27 The laser fluence dependence of the wavelength-dispersed optical emission spectra of the plume accompanying 532 nm LP-PLA of graphite in

- Figure 4.30 (a) TEM image of two carbon nitride nanoleaves. Note that the interconnected boundary is blurred (highlighted by arrowheads). (b) HRTEM image of the tip of the nano-leaf indicated by the open box in (a). It shows an oriented but imperfect attachement of 2 NPs. The dark side indicates that a numbers of NPs rest on the other crystals. (c) HRTEM image of the edge region at the left side of the nanoleaf indicated by the open box in (b). Arrowheads mark the interface between the primary particles. (d) MD pattern from the edge of the nanoleaf in (c).
- Figure 4.32 Proposed sequential growth pathway model involving structural and morphology modifications of carbon nitride, with increasing ablation time (and concentration) going from (a) to (f). (a) The ablation plume creates energetic C and N species. (b) The species condense into monodispersed spherical C₃N₄ 0D nanoparticles. (c) Nanoparticles elongate into 1D rods, and these start to

- Figure 5.1 (a) ZnO 'dandelions' formed from ZnO NRs [21]. (b) Uniform Sb₂S₃ bundles formed from the coalescence of numerous NRs [22]......151

- Figure 5.11 Time-dependent evolution of grass-like crystal morphology at different growth stages for (a) 30 min, (b) 2 h, (c) 8 h, (d) 12 h, and (e-f) 24 h, respectively. The box in (f) was marked for clarity of nanopetals arrangement. (Synthesis conditions: 35% ammonia solution, laser power 75 mJ, 10 min

- Figure 5.14 SEM images of different rod-like patterns obtained by drying the carbon nitride colloidal solution (a) in air (synthesis conditions: 25% ammonia solution, 50 mJ/ pulse, t = 1 h, TEM image shows the isolated carbon nitride NRs (see Figure 4.17(a)). (b) in air and (c) in sealed tube (synthesis conditions: 25% ammonia solution, 50 mJ/ pulse, t = 3 h, TEM image shows branched NRs (Figure 4.17(b)). Image (d) is recorded at a different magnification to (c).....173
- Figure 5.16 (a-b) TEM images of NR building blocks that form the 'grass-like' structures shown in Fig.5.15. (Synthesis conditions: laser power 125 mJ, 35%

- Figure 5.21 SEM images of (a) nanoleaf aggregates (sample conditions identical to that in Figure 4.29(a), TEM image shows leaf-like unit formed from numerous small NPs). (b) 3D leaf-like crystals with apparent NPs close-packed on the

surface. (c) Leaf-like structures consisting of vertical NR branches (region
highlighted by black box). (d) Interwoven NR arrangements to construct the
final superstructures
Figure 5.22 Schematic image of the lateral capillary force caused by an unstable
meniscus, from ref.[50]
Figure 5.23 Schematic image of evaporation-driven self-assembly186
Figure 6.1 A collection of various nanostructures of ZnO [3]. Note this image is
listed here only for illustration, scale bar is not shown
Figure 6.2 Wurtzite structure model of ZnO. The tetrahedral coordination of Zn-O is
shown [12]194
Figure 6.3 An SEM image of aligned ZnO NR arrays grown on a sapphire substrate
coated with a 3 nm-thick layer of Au. (b) Emission spectra from NR arrays at
pump power densities of 20 and 100 kW cm-2 using a Xe lamp with an
excitation wavelength of 325 nm at room temperature [5]
Figure 6.4 (a) Representative XRD pattern for the LP-PLA product (0.01 M SDS,
t = 2 h). TEM images of the samples for different ablation times (b) 0.5 h,
(c) 2 h, (d) 2.5 h, and (e) 5 h. (b) Spherical nanoparticles with a particle size of
~5-25 nm. (c) Adjacent particles that are aligned with one another are
highlighted by arrows. (d) Nanorods (highlighted by arrows) which might be
formed by NP 1D growth. (e) Well-developed 'leaf-like' structures with rough
and dense surfaces. (f) SEM image of ZnO nano-leaf structures prepared by
0.01 M SDS and 5 h ablation times
Figure 6.5 (a) HRTEM image of a series of aggregated ZnO NPs. (b) Adjacent
particles from the framed area in (a) showing aligned orientations and lattice
fringes. The arrows point to the boundaries between the crystallites. (c) SAED
pattern taken from the framed area in (a) observed along the [0001] zone-axis,
which is consistent with hexagonal symmetry. The arrows point to the
curvature of the diffraction spots

Figure 6.6 (a) and (b) the aligned packing of the NPs (0.001 M SDS, t = 2 h). (c) the particles lining up, serving as the starting point for subsequent coalescence into a NR (0.05 M SDS, t = 2 h). (d) leaf-like structures (0.05 M SDS, t = 5 h). (e) Plot of UV-visible absorbance from the ablation product (0.05 M SDS) for

different ablation times, showing a prominent feature at ~350 nm. (f) Proposed
model for sequential growth pathway
Figure 6.7 XPS survey spectra of ZnO nanostructures (a) sample prepared by 2 h
laser ablation with 0.001 M SDS concentrations and (b) sample identical to (a),
but after annealling for 2 h at 200 C in an oven in air. (c) Gaussian fitting curves
for the O1s peaks for the two samples, showing two components (see the
discussion in the text). (d) the detailed region scans of Zn 2p for two samples.
Figure 6.8 PL spectra obtained from 325 nm excitation of the sample following 2 h
laser ablation with SDS concentrations of: (a) 0.001 M, (b) 0.01 M, and (c)
0.05 M. (d) Sample identical to (a), but after annealling for 2 h at 200°C in an
oven in air
Figure A.1 TEM images of samples produced by LP-PLA of a graphite target in
water (laser fluence at 125 mJ per pulse) for durations of: (a) $t = 0.5$ h. (b)
t = 1 h (c) A typical SAED pattern taken from (a) (d) HRTEM lattice planes
corresponding to diamond (111) planes
Figure A 2 Raman spectra of (a) the graphite target and (b) the panocrystals formed
by LP PLA of graphite in water at 125 mL laser fluence and 1 h ablation time
by LI-I LA of graphite in water at 125 his faser fidence and 1 if ablation time.
Eigure A 2 Wavelength dignerged entired emission encours of the nume
Figure A.5 wavelength-dispersed optical emission spectra of the plume
accompanying 552 nm LP-PLA of graphite in water. The spectrum has been

- - Figure B.1 Theoretical structures [2] for (a) C₃P₄, (b) PC stoichiometries. The lighter and darker grey spheres represent the carbon/phosphorus atoms, respectively, while the dashed lines depict the unit cell boundaries......232

List of the tables

Table 1.1 Nanostructures and their assemblies from Ref. [3]
Table 1.2 Examples of self-assembly (S: static, D: dynamic, T: templated, B:
biological)
Table 2.1NanomaterialssynthesisviaLP-PLAinvariousliquids.
(NP = nanoparticles, NR = nanrods, SDS=sodium dodecyl sulfate, LDA=lauryl
dimethylaminoacetic acid, CTBA=cetyltrimethylammonium bromide)
Table 3.1 Experimental parameters used during LP-PLA process
Table 4.1 Structural energy (E_0) and bulk modulus (K_0) of predicted C ₃ N ₄ phases [3].
The order of magnitude of E_0 was also confirmed by full-potential linearised
augmented plane-wave (FP-LAPW) and the order of magnitude of K_0 was
also confirmed by Linear Muffin-Tin Orbitals (LMTO), Augmented
Spherical Wave (ASW) and FP-LAPW [11]. The value for K_0 for g-C ₃ N ₄
was taken from [8]91
Table 4.2 Calculated d-spacings for as-prepared NPs with comparison to theoretical
α -C ₃ N ₄ (% error between experimental and theoretical values shown).
Experimental d-spacings were produced from Figure 4.6(d) using the computer
program 'Process diffraction' [], CaRIne 3.1 crystallography and the equations
outlined in section Chapter 3.3.5
Table 4.3 Calculated <i>d</i> -spacings for as-prepared nanoleaves with comparison to
theoretical β -C ₃ N ₄ (% error between experimental and theoretical values shown).
Experimental d-spacings were produced from Figure 4.9(f) using the computer
program 'Process diffraction' [77], CaRIne crystallography and the equations
outlined in section Chapter 3.3.5
Table 4.4 UV-vis spectroscopy peaks from Figure 4.25.127
Table A.1 The lattice <i>d</i> -spacings of the four inner rings calculated from the SAED
data (Figure A.1(c)) with comparison to those for diamond and graphite
[18,19]
Table B.1 Calculated <i>d</i> -spacings (from Figure B.2(c) SAED pattern) with
comparison to theoretical pseudocubic-C ₃ P ₄

List of abbreviations

0D	Zero-dimensional
1D	One-dimensional
2D	Two-dimensional
3D	Three-dimensional
AOT	Bis(2-ethylhexyl)sulfosuccinate
BSE	Backscattered electron
CCD	Charge-coupled device
CNTs	Carbon nanotubes
CPD	Critical point dryer
CRT	Cathode ray tube
СТАВ	Cetyltrimethylammonium bromide
CVD	Chemical vapour deposition
CVTC	Chemical vapour transport and condensation
EDX	Energy dispersive X-ray spectroscopy
EELS	Electron energy-loss spectroscopy
FCC	Face-centered-cubic
FESEM	Field emission scanning electron microscopy
FET	Field effect transistor
FFT	Fourier-filtered transform
FP-LAPW	Full-potential linearised augmented plane-wave
FTIR	Fourier transform infrared spectroscopy
HFCVD	Hot filament chemical vapour deposition
НРНТ	High-pressure high-temperature
HRTEM	High resolution transmission electron microscopy
IR	Infrared
LDA	Lauryl dimethylaminoacetic acid

LMTO	Linear muffin-tin orbitals
LP-PLA	Liquid-Phase pulsed laser ablation
LRM	Laser Raman spectroscopy
MBE	Molecular beam epitaxy
MDP	Microdiffraction pattern
MOCVD	Metal-organic chemical vapour deposition
MOVPE	Metal-organic vapor phase epitaxy
NEXAFS	Near-edge X-ray absorbance
Nd:YAG	Neodymium-doped yttrium aluminium garnet
NMR	Nuclear magnetic resonance
NPs	Nanoparticles
NRs	Nanorods
NTs	Nanotubes
NWs	Nanowires
OES	Optical emission spectroscopy
OGM	Octaethylene glycol monododecyl
PECVD	Plasma-enhanced chemical-vapour deposition
PLA	Pulsed laser ablation
PL	Photoluminescence
PP	Pseudopotential plane-wave
SAED	Selective Area electron diffraction
SAM	Self-assembled monolayer
SEM	Scanning electron microscopy
SDS	Sodium dodecyl sulfate
STM	Scanning tunneling microscopy
TEM	Transmission electron microscopy
UV	Ultraviolet
UV-Vis	Ultraviolet-visible spectroscopy
VLS	Vapour-liquid-solid
XPS	X-ray photoelectron spectroscopy
XRD	X-ray diffraction